D-MINT (Deep learning - Multispectral INtensity of TCs)

D-MINT is neural network applied to GEO IR imagery and LEO passive microwave (MW)
imagery, along with selected environmental variables to estimate TC intensity (max
sustained 1-min. 10-m wind, MSW).

D-MINT is operated in real-time and processed for every available LEO MW overpass
from SSMI-S, AMSR-2, and GMI, when the overpass covers at least 65% of the TC in the
image and the corresponding IR imagery is available. Given the latency of MW data, D-
MINT is usually processed and its output available 1-3h after the LEO overpass time.

Output Graphics

The resulting model output is a histogram of TC
intensity probabilities for 15 different percentiles: 1%,
2nd 5th10th, 20t ..., 90th, 95t 98th and 99th. The D-
MINT current intensity (MSW) is calculated from the
inner average (30™ to 70t percentile intensities),
which has the best record for accuracy. An example
for Hurricane Eta (2020) is shown to the right.

In real-time output graphics (example for TC
Isla (2023) shown to the right), the estimated
current D-MINT intensity is plotted as a circle
with whiskers out to the 25t to 75t
percentile intensities. Wider whiskers mean
D-MINT is less certain of the intensity
estimate. The working best track intensity
from NHC or JTWC is depicted with a black
line. A table of the average intensity and 25t
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Model Technical Details
H a) 0-h IR data: 128 x 128 x 1 3-h IR data: 128 x 128 x 1 6-h IR data: 128 x 128 x 1
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D-MINT uses 5 normalized normalized IR window (10.3 um) images over the previous
12 hours (or fewer if not all are available). While the above image displays each IR
image as an individual 128x128x1 input for clarity, the actual IR image input into
D-MINT is 128x128x5. Thus, D-MINT can identify differences between the IR images
(detailed later).
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D-MINT uses normalized 37- and 89-GHz MW images. These image sizes are
smaller than the IR at 64x64x2.
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The final inputs into D-MINT are scalar predictors from the SHIPS Isdiag files.

D-MINT is trained on global tropical cyclones.
North Eastern Western North Indian Southern Global

Atlantic North Pacific | North Pacific Ocean Hemisphere

8578 9253 14,296 1190 7814 41,131
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Diagnosing the D-MINT intensity estimates: A Brief Guide to SHAP Values

The power of the deep learning model comes from the ability to form complex, nonlinear
relationships between images and the environment in order to predict an unknown feature
(TC intensity). However, this power also complicates our ability to interpret the reasoning
used by the model. To address this, the SHapley Additive Explanation (SHAP) method
approximates the nonlinear model as a linear model, in order to give a rough idea of the
sensitivities of the model result to each input. We have organized a set of diagnostic
graphics to show a first-order approximation of how the model arrives at its answer. In the
next pages we’ll break down the three elements of the SHAP diagnostic graphic.

1. Full input breakdown 2. IR contribution

Shap values for 2023_17S at 20230331 1829UTC Comparison of IR SHAP Values for 2023_17S at 20230331 1829UTC
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3. MW contribution

Comparison of MW SHAP Values for 2023_17S at 20230331 1829UTC
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Why use IR imagery \
from 0 to 12 hrs old?
We found this to be
more accurate than
models with any more
or less IR imagery as
their inputs. Adding
this context of recent
TC history seems to
help prevent
overfitting to the

wtest single image. J
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1. Full input breakdown
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The top rows summarize the contributions of the satellite imagery to
the final estimate. Each point on the chart stands for the amount that
the image adds to the final estimate (starting at a baseline 60 knots).
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predictors to the final estimate. Refer to these to pick out

Shap values for 2023_175 at 20230331 1829UTC
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1) Whether the environment/history is generally favorable or unfavorable
2) Whether it identifies any contributors that are uniquely influential
3) Whether any contributor may be in error
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Finally, the color of each point indicates its value above or below the climatological average for TCs. For

instance, the Distance to Land is blue, indicating a relatively short distance.

As for the image contribution coloring (top plot), we have simply set the colors to match our coloring of

image brightness temperatures, where blue means warmer and red means colder.
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2. IR contribution (spatial SHAP values)

Strong tropical cyclone
105 kt max. sustained winds (1 min.)

Comparison of IR SHAP Values for 2023_17S at 20230331 1829UTC
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D-MINT inputs five IR

imagery time frames
together. However, the
images are always
significantly
autocorrelated, so a
high contribution from
one time frame does

SHAP Value=8.58 kts

not rule out the

influence of other time
frames. On the left
case, the strongest
signal comes from the
12 hr old eye.
However, you can

SHAP Value=8.31 kts

interpret this as a
signal of the eye

strength from all five
images because their
eyes are so similar,
and you can think of it
as the SHAP algorithm
choosing the easiest

SHAP Value=22.17 kts

signal to emphasize
among several at the

exact location.
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Unlike in the Full Input Breakdown, the|blue-to-red colors are the pixelwise SHAP values for the IR
images. These SHAP values sum up to the number listed above each image, which is plotted on the Full

Input Breakdown.
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3. MW contribution (spatial SHAP values)

These plots work the same as the IR contribution plots, except that there is only the Oh image.
Just note that the SHAP color scale is not the same between IR and MW and will also vary from

case to case.

Strong tropical cyclone
105 kt max. sustained winds (1 min.)

Comparison of MW SHAP Values for 2023_17S at 20230331 1829UTC
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Here we see that the model inferred a
strong signal from the inner eyewall
gradients. The 37 GHz imagery was much
less significant than the 89 GHz imagery.

Weak tropical cyclone
30 kt max. sustained winds (1 min.)

Comparison of MW SHAP Values for 2023_01B at 20230511 0056UTC
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The model finds signals at the high-
gradient edges in both images, but note
that the magnitudes are relatively low,
indicated by the low total value listed at
the tops of the images and by the lower
min and max of the SHAP color scale.
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Model Performance Statistics

Root Mean Squared Error for 2019-2021 Global TCs
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Pacific Pacific Ocean Hemisphere

Basin
# Forecasts: 1310 803 1637 270 950 4970

D-MINT AIDT SATCON

D-MINT has the lowest error in the North Atlantic, Eastern and Western Pacific. For the North
Indian Ocean, it has the highest error. Only ADT has a higher error in the Southern Hemisphere.
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Compared to ADT, AiDT and SATCON, D-MINT is the least biased for weak TCs (< 40 kts). It is the
second-least biased option for strong TCs (> approx. 120 kt), after SATCON.

Developers: Sarah Griffin and Tony Wimmers

Contact: sarah.griffin@ssec.wisc.edu

Reference: Griffin, S. M., A. Wimmers, and C. S. Velden, 2023: Predicting Short-term
Intensity change in Tropical Cyclones using a Convolutional Neural Network. In
Review
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