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ABSTRACT: This study develops a probabilistic model based on a convolutional neural network to predict rapid intensi-
fication (RI) in both North Atlantic and eastern North Pacific tropical cyclones (TCs). Coined “I-RI,” an advantage of us-
ing a convolutional neural network to predict RI is that it is designed to learn from spatial fields, like two-dimensional
satellite imagery, as well as scalar features. The resulting model RI probability output is validated against two operational
RI guidances}an empirical and a deterministic method}to assess skill at predicting RI over 12-, 24-, 36-, 48-, and 72-h
lead times. Results indicate that in North Atlantic TCs, AI-RI is more skillful at predicting RI over 12- and 24-h lead times
compared to both operational RI guidances. In eastern North Pacific TCs, AI-RI is more skillful than the empirical opera-
tional RI guidance at most RI thresholds, but less skillful than the deterministic RI guidance at all thresholds. For TCs
north of 158N, where the deterministic skill was lower, AI-RI was more skillful than the deterministic operational guidance
for over half of the RI thresholds. It is also found that AI-RI struggles to reach the higher RI probabilities produced by
both of the operational RI guidances in both basins. This work demonstrates that the two-dimensional structures within
the satellite imagery of TCs and the evolution of these structures identified using the difference in satellite images, captured
by a convolutional neural network, yield better 12–24-h indicators of RI than existing scalar assessments of satellite bright-
ness temperature.

SIGNIFICANCE STATEMENT: The purpose of this study is to develop a method to predict tropical cyclone rapid
intensification using artificial intelligence. The developed model uses a convolutional neural network, which can iden-
tify features in satellite imagery that are indicative of rapid intensification. The results suggest that, compared with cur-
rent operational rapid intensification models, a convolutional neural network approach is generally more skillful at
predicting rapid intensification.
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1. Introduction

Significant improvement has been achieved in the predic-
tion of tropical cyclone (TC) rapid intensification (RI) over
the last two decades (Cangialosi et al. 2020), thanks in part to
the Statistical Hurricane Intensity Prediction Scheme (SHIPS)
rapid intensification index (RII; Kaplan and DeMaria
2003; Kaplan et al. 2010; DeMaria et al. 2021). However,
predicting RI remains a complex and challenging problem
(Cangialosi and Franklin 2014), since multiscale processes,
including environmental, inner-core, and oceanic, all likely
contribute to the probability of RI occurring. Specifically,
studies focused on inner-core processes contributing to RI
have examined convective-scale bursts (e.g., Guimond et al.
2010; Wang and Wang 2014; Rogers et al. 2013, 2015), as
vigorous convection with associated latent heat release through
condensation processes is an essential ingredient for TC intensi-
fication (Adler and Rodgers 1977; Kuo 1965). However, the
specific contribution to RI from this observed process remains
difficult to quantify.

The purpose of this study is to expand upon existing statisti-
cal RI forecast methods by employing artificial intelligence
(AI), namely, a convolutional neural network (CNN) coined

AI-RI. CNNs are designed to learn from spatial patterns
(Lagerquist et al. 2020), making them ideal for analyzing
the convective organization of TCs as depicted in satellite
infrared (IR) imagery. Identifying and quantifying active
convection in the tropics has been attempted in a variety of
ways and with varying success, mainly through the use of
satellites (Steranka et al. 1986; Alcala and Dessler 2002;
Liu and Zipser 2005; Romps and Kuang 2009; Olander and
Velden 2009; Monette et al. 2012). SHIPS-RII initially ac-
counted for TC convection by calculating the percent area
within a 50–200-km radius with IR brightness temperatures
(BTs) , 2308C (Kaplan et al. 2010, hereafter KDK10) and
currently incorporates the value of a principal-component-
analysis derived from IR imagery as well as the standard
deviation of IR brightness temperature (Kaplan et al. 2015,
hereafter K15). However, it is possible these methods
could underestimate the potential growth of small-scale
convection and any other relevant spatial structure associ-
ated with TC RI, whereas this structure could be better
characterized with a CNN.

Recently, the TC research community has begun to use AI
to analyze and understand TC characteristics. For example, to
estimate current TC intensity, Wimmers et al. (2019) applied
a CNN to passive microwave imagery, while Zhang et al.
(2020) used a CNN model with inputs of satellite IR and
water vapor features and Chen et al. (2019) implemented a
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CNN model incorporating IR and microwave-derived rain
rate. Mercer et al. (2021) employed unsupervised machine
learning to identify differences between environments for RI
and non-RI TCs. Shaiba and Hahsler (2016) used a random
forest model on TC bulk statistics to predict TC RI and com-
pare the skill to SHIPS-RII, and Xu et al. (2021) created a
multilayer perceptron to predict TC intensity in the next 24 h,
but to the authors’ knowledge, there are no published studies
of applying CNNs to predict TC RI.

This paper is organized as follows. Section 2 describes the
TC and AI-RI input feature data used in this study. Sections 3
and 4 describe the CNN model and the method for determin-
ing which inputs to the CNN, known as features, are selected
for RI prediction. Section 5 presents the findings and a dis-
cussion. Finally, a summary and conclusions are presented
in section 6.

2. Data

a. Tropical cyclone tracks and rapid intensification
validation

This study considers North Atlantic TCs, defined as west of
308W, from 2003 to 2020 and eastern North Pacific TCs east
of 1408W, from 1998 to 2020. TC intensity and location histo-
ries are obtained from the National Hurricane Center (NHC)
best tracks and are used to analyze AI-RI forecasts at the syn-
optic hours of 0000, 0600, 1200, and 1800 UTC. Consistent
with previous studies, we specify RI for eight predefined thresh-
olds based on an increase in the maximum 1-min sustained
10-m winds of 20 kt (1 kt ≈ 0.51 m s21) over a 12-h period;
25, 30, 35, and 40 kt over a 24-h period; 45 kt over a 36-h period;
55 kt over a 48-h period; and 65 kt over a 72-h period. Cases
where a TC center is over land within the RI lead time or the
12 h prior to the forecast time are not analyzed. Also, instances
when a system is categorized as an open wave or invest are not
analyzed (based on NHC best track data).

Current operational RI forecast guidance includes the
SHIPS-RII (KDK10), as well as a logistic regression scheme
and a Bayesian scheme (Rozoff and Kossin 2011). The proba-
bility of RI from these three schemes are also averaged to cre-
ate a consensus mean (K15), hereafter referred to as the
“SHIPS Consensus” since the guidance is disseminated with
the SHIPS graphical output package. Rozoff and Kossin
(2011) and K15 reported that the consensus shows skill over
the individual model members and is often used operation-
ally. Therefore this consensus will be used as one way to as-
sess the skill of AI-RI. Another operational RI forecast
model is the Deterministic to Probabilistic Statistical Model
(DTOPS; Onderlinde and DeMaria 2018; DeMaria et al.
2021), a logistic regression model using intensity change from
five different numerical weather models as inputs, in addition
to latitude and current intensity. DTOPS has been shown to
be more skillful than SHIPS-Consensus for at least half of the
RI thresholds (DeMaria et al. 2021). Therefore, the skill of
AI-RI forecasts will be compared to both SHIPS Consensus
and DTOPS in this study.

b. Satellite features

Inputs to AI-RI include features based on satellite imagery
of TCs. The satellite features used in this analysis are derived
from IR BTs obtained from the Geostationary Operational
Environmental Satellite (GOES) series, fromGOES-10 through
GOES-17. GOES-10 became operational in 1998 over the east-
ern North Pacific Ocean while GOES-12 was first operational
over the North Atlantic Ocean in 2003. Since the spatial resolu-
tion of these GOES IR imagers varies from 2 to 4 km at nadir
over the period of interest, the satellite data for each TC in
this study is remapped to a 4-km spatial resolution encompass-
ing 400 3 400 grid points centered on the TC using nearest-
neighbor interpolation. This is done in order to homogenize
the input data for the CNN. These images are not parallax cor-
rected, as cloud height information is not available for the full
dataset. However, since the average parallax error in the loca-
tion of the lowest BTs from 2019 to 2020 TCs is similar to
the precision of the TC center latitude and longitude, about 0.18
or 11.5 km, issues in patterns of BTs due to parallax with re-
spect to the TC center will be negligible. A satellite scan over a
TC must be within 1 h of a best track synoptic time to be in-
cluded. To account for potential characterization discrepancies
between North Atlantic and eastern North Pacific TCs, satellite
feature data for each basin is normalized by subtracting the
mean BT calculated from all grid points from every TC in the
given basin and dividing by the standard deviation also calcu-
lated from all grid points from every TC in the given basin.
Although the central IR window wavelengths are 10.3 mm for
GOES-16 andGOES-17 and 10.7 mm for all other GOES satel-
lites considered, this difference is deemed minimal and there is
no attempt at normalization based on the IR wavelength.

In addition to the IR image BT feature, IR BT difference fea-
tures are also calculated that include 1-, 3-, and 6-h BT differ-
ence within roughly 38 and 108 of the TC center from the NHC
best track (corresponding to 82 3 82 and 276 3 276 grid sizes,
respectively). Differences are calculated as previous satellite im-
age minus current satellite image, so negative values indicate
warming BTs. See Table 1 for a list of the satellite features.

c. Scalar features

The scalar features used in this analysis are available from
the SHIPS developmental data provided by the Cooperative
Institute for Research in the Atmosphere (CIRA) available
at https://rammb.cira.colostate.edu/research/tropical_cyclones/
ships/developmental_data.asp. A list of all the scalar and satel-
lite features used in this analysis are shown in Table 1, which
also serves as a reference for subsequent acronyms used in the
text. These features include current and past information about
the analyzed TC position and intensity, as well as the surround-
ing environment and oceanic characteristics. Some of these fea-
tures are explicitly chosen because they are used in the SHIPS
Consensus RI models, while others like TOD and the tangential
wind predictors are chosen to investigate whether they add any
skill at RI predictability in this new context. Like the satellite
features, the scalar features are normalized for each oceanic ba-
sin. Data for the scalar features is either evaluated at time t 5 0
or averaged over the entire RI lead time as noted in Table 1.
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The scalar features used by AI-RI for comparison with
SHIPS Consensus and DTOPS were gathered from real-time
lsdiag files provided by the NHC. These files are available at
https://ftp.nhc.noaa.gov/atcf/archive/MESSAGES/. The real-
time lsdiag files are used instead of the SHIPS developmental
data to provide a more homogeneous comparison between
AI-RI and the real-time SHIPS Consensus and DTOPS, as

the real-time files could contain potential errors in TC inten-
sity and location and use the Global Forecast System (GFS)
model when estimating the model-based scalar predictors.
Since these real-time lsdiag files do not provide HIST or
MSLP, these variables were calculated from working NHC
best tracks, which are available at http://hurricanes.ral.ucar.
edu/realtime/plots/.

TABLE 1. List of all features considered when developing AI-RI.

Feature Description (r 5 radius from TC center)

IR 4-km IR brightness temp (BT) data (400 3 400 grid points centered on TC)
1h-IRdiff-3deg 1-h IR BT difference (r 5 38)
1h-IRdiff-10deg 1-h IR BT difference (r 5 108)
3h-IRdiff-3deg 3-h IR BT difference (r 5 38)
3h-IRdiff-10deg 3-h IR BT difference (r 5 108)
6h-IRdiff-3deg 6-h IR BT difference (r 5 38)
6h-IRdiff-10deg 6-h IR BT difference (r 5 108)
POT Difference between current and max intensity (time avg)
MPI Maximum potential intensity (time avg)
TOD Time of day (local solar time)
VMAX Maximum wind
MSLP Mean sea level pressure
HIST The number of 6-h periods VMAX has been above 20 kt
DELV 212- to 0-h intensity change
LAT Latitude
LON Longitude
RSST Reynolds SST (time avg)
COHC Climatological ocean heat content (time avg)
CD20 Climatological depth of 208C isotherm from 2005 to 2010 NCODA analyses (time avg)
CD26 Climatological depth of 268C isotherm from 2005 to 2010 NCODA analyses (time avg)
NC26 Depth of 268C minus CD26 (time avg)
DTL Distance to land (time avg)
U200 200-hPa zonal wind (r 5 200–800 km) (time avg)
U20C 200-hPa zonal wind (r 5 0–500 km) (time avg)
V20C 200-hPa meridional wind (r 5 0–500 km) (time avg)
RHLO 850–700-hPa relative humidity (r 5 200–800 km) (time avg)
RHMD 700–500-hPa relative humidity (r 5 200–800 km) (time avg)
RHHI 500–300-hPa relative humidity (r 5 200–800 km) (time avg)
Z850 850-hPa vorticity (r 5 0–1000 km)
D200 200-hPa divergence (r 5 0–1000 km)
V000 1000-hPa tangential wind azimuthally averaged at r 5 500 km
V850 850-hPa tangential wind azimuthally averaged at r 5 500 km
V500 500-hPa tangential wind azimuthally averaged at r 5 500 km
V300 300-hPa tangential wind azimuthally averaged at r 5 500 km
DIVC 200-hPa divergence centered at 85-hPa vortex location
SHDC 850–200-hPa shear with vortex removed (r 5 0–500 km) (time avg)
SHRD 850–200-hPa shear (r 5 200–800 km) (time avg)
SHRS 850–500-hPa shear (time avg)
MTPW01 r 5 0–200-km average total precipitable water (TPW)
MTPW03 r 5 200–400-km average TPW
MTPW05 r 5 400–600-km average TPW
MTPW07 r 5 600–800-km average TPW
MTPW09 r 5 800–1000-km average TPW
MTPW11 r 5 0–400-km average TPW
MTPW13 r 5 0–600-km average TPW
MTPW15 r 5 0–800-km average TPW
MTPW17 r 5 0–1000-km average TPW
EPSS Avg ue difference (only positive) between a parcel lifted from the surface compared with the saturated ue of

the environment (r 5 200–800 km) (time avg)
ENSS Avg ue difference (only negative) between a parcel lifted from the surface compared with the saturated ue of

the environment (r 5 200–800 km) (time avg)
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3. AI-RI

A schematic of the AI-RI CNN model can be seen in Fig. 1.
This configuration uses IR and 38 IR difference satellite fea-
tures as inputs. There are three main components to a CNN:
convolution, pooling, and dense layers. AI-RI begins by pass-
ing the normalized IR and IR difference data through a con-
volution layer to produce an output map, or “feature map”
(Fig. 1a). A useful definition of convolution in the context of

deep learning is given by Eq. (4) in Lagerquist et al. (2019),
though the standard meaning of image processing through
filtering applies here as well. For each convolution layer, a
3 3 3 grid point convolution filter operates spatially on the
combined input grids, encoding spatial patterns at higher lev-
els of abstraction with each layer. Each convolutional filter in
the CNN has a different set of weights, which are initialized
randomly. In AI-RI, the first convolution layer produces a
feature map that has dimensions of 400 3 400 3 8. After

FIG. 1. Architecture of the AI-RI convolution neural network (CNN). The inputs used in this analysis are normal-
ized (a) infrared (IR) BT data, (b) IR BT difference, and (c) scalar predictors. In the normalized input and feature
maps produced by convolution and pooling layers, positive values are in red and negative values are in blue. Dropout
(0.5) randomly sets half of the input units in the concatenated data to zero during training to mitigate against
overfitting.
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every convolution layer, a “leaky rectified linear unit” activa-
tion (ReLU; Maas et al. 2013) is applied, followed by average
pooling layers. Activation is an elementwise nonlinear func-
tion applied to a given feature map; without it a CNN would
only learn linear relationships. Average pooling layers down-
sample the feature map independently (e.g., Li et al. 2020),
halving the spatial resolution at each pooling (which has be-
come the fairly standard design). The process described
above is repeated for 5 layers until the final IR feature map
is 12 3 12 3 128, which is then flattened into a 1D vector
with 18 432 elements.

The process described above is repeated for the IR BT dif-
ference satellite features (Fig. 1b). For the 38 IR BT differ-
ence, which has an input dimension of 82 3 82 3 1, three
convolution, activation, and pooling layers are used until the
feature map is flattened to a 1D vector with 3200 elements.
The 108 IR BT difference goes through an additional set of
layers before flattening to a 1D vector with 18 496 elements.
Finally, the flattened IR feature map, flattened IR difference fea-
ture map, and additional input scalar features are concatenated
together (Fig. 1c). The concatenated feature map is then sent
through two dropout and three dense layers. Dropout (Hinton
et al. 2012) randomly zeroes out a fraction of the layer’s values,
thereby forcing the weights in a given layer to evolve more in-
dependently and to reduce overfitting. Dense layers transform
feature maps into predictions. The first two dense layers use the
default ReLU activation function, which zeros out negative val-
ues, while the final dense layer uses the sigmoid activation
function to squash the AI-RI output to range from 0 to 1 as a
probability prediction (Chollet 2018).

Since TC RI prediction is a binary classification problem
(RI either does or does not occur), we chose to minimize the
binary cross-entropy loss function. This loss function identifies
when the model should stop training. The equation for binary
cross-entropy is

« 5 2
1
N

∑N

i51
[yi log(pi)1 (1 1 yi) log(1 2 pi)]: (1)

In Eq. (1), yi is the RI label (1 for RI, 0 for no RI), pi is the pre-
dicted probability of RI for each ith example, N is the number of
examples, and « is the binary cross-entropy, ranging from [0, ‘].

4. Methodology

a. Data processing

The TCs used in this analysis are divided into three categories:
training, validation, and testing. The testing dataset consists of all
North Atlantic and eastern North Pacific TCs from 2019 to 2020,
to compare to the most recent operational SHIPS Consensus RI
forecasts. The remaining TCs are randomly divided into the
training dataset (approximately 80% of the remaining TCs) and
validation dataset (approximately 20% of the remaining TCs).
Validation TCs are selected by binning TCs into basins and
months and randomly selecting 20% of the TCs in each bin. This
is done to ensure that any characteristics and environments of
the TCs that vary with the time of year are proportional between

the training and validation datasets. Since few TCs occur from
January to June, TCs from these months are binned together
when selecting the validation TCs. The same is done for
November and December TCs. When developing AI-RI, train-
ing is done using the training dataset while the validation dataset
is used to determine the optimal model configuration. Therefore,
the testing dataset remains independent to any model training.

Depending on the RI threshold used, the training dataset
consists of 3608–8442 TC images. To increase the size of the
training dataset, the satellite feature data are augmented us-
ing image rotation. For each TC time in the training dataset,
the image for each IR and IR-difference feature is rotated 08,
908, 1808, and 2708, technically quadrupling the size of the
training dataset. However, the scalar data are not augmented
for the training dataset, and therefore the four augmented TC
satellite features match identical scalar features.

As mentioned in the previous section, each CNN begins
with randomly initialized weights for each given feature. Since
CNNs start with this random initialization, and due to the
small number of RI events even in the augmented training da-
taset, it was found that training two different CNNs using the
same input features would produce a significantly different
probability of RI for a given TC. Therefore, it was decided to
train five CNNs to create an ensemble and average the RI
probabilities to provide greater forecast accuracy. Any refer-
ence to AI-RI hereafter refers to the ensemble of five CNNs.
While employing an ensemble greatly increases the time nec-
essary to develop the AI-RI, a given RI probability can still
be produced within a few minutes.

b. Feature selection

To identify which features are optimal at predicting RI for
each threshold (section 2a), RI prediction begins by training
seven different types of model configurations. These model
configurations are humorously coined the “kitchen sink”
models as they include all scalar features listed in Table 1.
One kitchen sink feature configuration includes just the IR
feature, in addition to all scalar features, while the other six
members include the IR feature and one IR difference feature
from Table 1, in addition to all scalar features. After the seven
different kitchen sink configurations are trained for each RI
threshold, the optimal features for predicting RI for each of
the seven different model configurations are selected using
“permutation importance” applied to the validation dataset.
In permutation importance, input data for a given feature are
randomly shuffled among the validation TCs, while leaving
the other features’ input data consistent. Therefore, this
method reveals the model’s sensitivity to the permutated fea-
ture. The permutated feature’s impact on overall model skill
is measured with the Brier skill score (BSS; Wilks 2006). The
BSS is calculated using the following equation:

BSS 5 1 2
BS

BSclimo
, (2)

where

BS 5
1
n

∑n

k51

(yk 2 ok)2: (3)
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In Eq. (3), y represents the probability of RI, either from
AI-RI or climatological, and o represents the actual occur-
rence of RI: 0 if no RI occurs and 1 if RI occurs. In Eq. (2),
BSclimo refers to Eq. (3) where y represents a reference clima-
tology. The reference climatologies for 2019 and 2020 from
SHIPS can be seen in Table 2. A positive BSS indicates AI-RI
is skillful compared to climatology. A feature is deemed optimal
for predicting RI if the BSS of the permutated version is lower
than that of the nonpermutated version. The BSS used in fea-
ture permutation here is an average of 1000 instances of boot-
strap sampling with replacement from the validation dataset.

Once the optimal features for each RI threshold and combi-
nation of satellite features are identified, the AI-RI ensemble
of models are then trained again using only the optimal fea-
tures. As this still leaves seven different configurations for
each RI threshold based on the different satellite features, the
configuration with the highest BSS for the validation dataset
is ultimately used to predict RI at that threshold. While the
training and feature permutation importance was completed
using TCs from both the North Atlantic and eastern North
Pacific basins, the final AI-RI feature configuration is selected
based on validation TCs from the given basin. Therefore, the
feature configurations of AI-RI are different for each thresh-
old and between the North Atlantic and eastern North Pacific
basins. The optimal features for RI are shown in Table 3
(Table 4) for the North Atlantic (eastern North Pacific)
basins. While some predictors are consistently optimal for all
RI thresholds in both basins, other predictors vary based on
threshold and basin. This is not uncommon, as the logistic re-
gression and Bayesian models in SHIPS Consensus also include
different predictors depending on RI threshold and basin
(K15). Part of this difference in predictors between basins could
also be due to aircraft reconnaissance, which is more common
in the North Atlantic.

c. Shapley additive explanation values

While permutation importance described above indicates
the impact of an individual feature on model skill, the impact
of an individual feature on the probability of RI for any given
TC is assessed using Shapley additive explanation (SHAP)
values (Shapley 1953; Lundberg and Lee 2017; Lundberg et al.
2018, 2020). SHAP is an “explanation model” that uses a
large combinatorial analysis to estimate the relative contribu-
tion of each input feature to the corresponding output of a
predictive model. Although it relies on linear approximations

of model performance, it has the advantage of supplying sim-
ple and interpretable solutions to questions of model perfor-
mance, and the power of this approach increases with the
number of examples supplied to it, as later analysis will dem-
onstrate (section 5).

SHAP values (expressed as percentages) corresponding to
an individual input feature indicate the extent to which that
feature contributes to the probability of RI, and they can be
positive or negative. For any given case, the SHAP values of
all input features sum to about 6 to 13 percentage points
lower than the RI probability, with this difference increasing
with increasing RI probability. This difference is because the
SHAP values cannot feasibly be calculated with the entire
training dataset. In this analysis, SHAP values are calculated
using the shap python library (https://github.com/slundberg/
shap), with the already-trained AI-RI and inputs into AI-RI.
For more information on the computation of SHAP values,
please refer to Mangalathu et al. (2020).

5. Results and discussion

a. North Atlantic basin

The Brier skill score is used to assess forecast skill in this
study as the AI-RI, SHIPS Consensus and DTOPS methods
all produce RI forecasts in terms of probabilities. A higher
BSS indicates greater skill. Figure 2 shows the results for 2019
and 2020 North Atlantic TCs where gray bars represent the
BSS for AI-RI, the BSS for SHIPS Consensus is indicated by
light blue bars, and dark blue bars represent the BSS when
the AI-RI probability is included in the SHIPS Consensus
average (hereafter “AI-RI in SHIPS Consensus”), with the
AI-RI forecast receiving equal weight with the RII, logistic re-
gression and Bayesian schemes. Similarly, lighter green bars
indicate the BSS for DTOPS, and dark green bars represent
the BSS when the AI-RI and DTOPS probabilities are aver-
aged together (hereafter “AI-RI and DTOPS”). As seen for
25-, 30-, and 35-kt RI thresholds, AI-RI has a higher BSS
than the SHIPS Consensus and DTOPS, indicating AI-RI is
more skillful at predicting RI at these thresholds for the North
Atlantic TCs. For RI thresholds of 12 and 24 h, the AI-RI in
SHIPS Consensus has higher skill than the SHIPS Consensus
alone. However, for RI thresholds of 36 h and above, AI-RI
in SHIPS Consensus BSS is lower than SHIPS Consensus.

The DTOPS results show that for all RI thresholds, DTOPS
has a lower BSS than SHIPS Consensus. However, adding

TABLE 2. Climatological probability of RI for North Atlantic and eastern North Pacific TCs. These probabilities are available
in SHIPS.

20 kt
(12 h)21

25 kt
(24 h)21

30 kt
(24 h)21

35 kt
(24 h)21

40 kt
(24 h)21

45 kt
(35 h)21

55 kt
(48 h)21

65 kt
(72 h)21

North Atlantic
2019 5.0% 10.9% 6.7% 3.8% 2.4% 4.5% 4.6% 5.2%
2020 5.2% 10.9% 6.9% 3.9% 2.5% 4.6% 4.6% 5.4%
Eastern North Pacific
2019 6.1% 12.5% 8.4% 6.0% 4.0% 6.5% 5.9% 4.7%
2020 6.3% 12.6% 8.6% 6.2% 4.2% 6.7% 5.9% 4.8%
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AI-RI leads to “AI-RI and DTOPS” performing the best
for the 20-, 25-, 30-, and 55-kt RI categories.

Figure 3 shows another way to assess the relative improve-
ment of AI-RI over the SHIPS Consensus (AI-RI is only
compared to SHIPS Consensus in this figure, as well as the
rest of this section, as SHIPS Consensus is more skillful than
DTOPS in this basin based on the results in Fig. 2). During

observed RI occurrences (red bars in Fig. 3a), an improved
forecast is when the AI-RI probability is higher than the
SHIPS Consensus. During non-RI occurrences (purple bars
in Fig. 3a) an improved forecast is when the AI-RI probability
of RI is lower than the SHIPS Consensus. Next, Fig. 3b dis-
plays the average difference between AI-RI and SHIPS Con-
sensus probabilities over all RI/no RI verified forecasts for

TABLE 3. Features used to predict RI in North Atlantic tropical cyclones.

Feature
20 kt

(12 h)21
25 kt

(24 h)21
30 kt

(24 h)21
35 kt

(24 h)21
40 kt

(24 h)21
45 kt

(36 h)21
55 kt

(36 h)21
65 kt

(72 h)21

IR X X X X X X X X
1h-IRdiff-3deg X
1h-IRdiff-10deg
3h-IRdiff-3deg X X
3h-IRdiff-10deg X X
6h-IRdiff-3deg X
6h-IRdiff-10deg X
POT X X X X X X X X
MPI X X X X X X X X
TOD X X X X X
VMAX X X X X X X X X
MSLP X X X X X X X X
HIST X X X X X X X X
DELV X X X X X X X X
LAT X X X X X X X X
LON X X X X X X
RSST X X X X X X X X
COHC X X X X X X
CD20 X X X X X
CD26 X X X X X
NDML X X X X X
DTL X X X X
U200 X X X X X
U20C X X X X X X X X
V20C X X X X X
RHLO X X X
RHMD X X X X X
RHHI X X X X X X
Z850 X X X X X X
D200 X X X X
V000 X X X X X
V850 X X X X X
V500 X X X X X X
V300 X X X X X X X
DIVC X X X
SHDC X X X X X X X X
SHRD X X X X X X X X
SHRS X X X X X X
MTPW01 X X X
MTPW03 X X X
MTPW05 X X
MTPW07 X X
MTPW09 X X X X
MTPW11 X
MTPW13 X X X
MTPW15 X X X X
MTPW17 X X X X
EPSS X X X X X
ENSS X X X X X X X

GR I F F I N E T A L . 1339AUGUST 2022

Brought to you by UNIVERSITY OF WISCONSIN MADISON | Unauthenticated | Downloaded 09/05/23 05:13 PM UTC



each RI threshold. The AI-RI shows improvement over the
SHIPS Consensus when this difference is positive for RI (red
bars) and negative for non-RI (purple bars).

As seen in Fig. 3a, AI-RI forecasts of RI are generally an
improvement over SHIPS Consensus forecasts for most RI
thresholds concentrated at or below 24-h lead times. For these
thresholds, the average difference between the AI-RI and

SHIPS Consensus probabilities is positive (negative) when RI
does (does not) occur (Fig. 3b), which helps to explain the
higher skill of AI-RI in Fig. 2. Even though AI-RI forecasts
improve less than 50% of RI occurrences compared to SHIPS
Consensus for the 30-kt RI category, the AI-RI BSS (Fig. 2)
is higher because of much higher forecast probabilities in cer-
tain cases within this category. One such case is the RI of

TABLE 4. Features used to predict RI in eastern North Pacific tropical cyclones.

Feature
20 kt

(12 h)21
25 kt

(24 h)21
30 kt

(24 h)21
35 kt

(24 h)21
40 kt

(24 h)21
45 kt

(36 h)21
55 kt

(36 h)21
65 kt

(72 h)21

IR X X X X X X X X
1h-IRdiff-3deg X
1h-IRdiff-10deg
3h-IRdiff-3deg
3h-IRdiff-10deg
6h-IRdiff-3deg X X X X X X
6h-IRdiff-10deg
POT X X X X X X X X
MPI X X X X X X X
TOD X X X X X
VMAX X X X X X X X X
MSLP X X X X X X X X
HIST X X X X X X X X
DELV X X X X X X X X
LAT X X X X X X X X
LON X X X X X X
RSST X X X X X X X X
COHC X X X X X
CD20 X X X X
CD26 X X X X X X X
NDML X X X X X
DTL X X X
U200 X X X X
U20C X X X X X X
V20C X X X X X
RHLO X X X
RHMD X X X X X X
RHHI X X X X X X
Z850 X X X X X X
D200 X X X X
V000 X X X X X
V850 X X X X X X
V500 X X X X X X
V300 X X X X X X X
DIVC X X X
SHDC X X X X X X X X
SHRD X X X X X X X X
SHRS X X X X X
MTPW01 X X
MTPW03 X X
MTPW05 X X X X
MTPW07 X X X
MTPW09 X X X X
MTPW11 X X
MTPW13 X
MTPW15 X X X X
MTPW17 X X X X
EPSS X X X X X
ENSS X X X X X X X X
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Hurricane Laura (2020). An examination of SHAP values for
Hurricane Laura (not shown) indicates that the highest contrib-
uting feature to the AI-RI probability is the 3h-IRdiff-3deg field
(3-h image difference). If this feature is not used, the AI-RI
forecast is less skillful than SHIPS Consensus. This demon-
strates the potentially decisive role of the 3-h IR image trend,
which is lacking in other existing objective methods in fore-
casting RI.

For RI at 36-h lead times and longer, the results are more
mixed, possibly fueled by smaller sample sizes (especially for
65-kt RI). The average difference between AI-RI and SHIPS
Consensus RI probabilities is negative when 45-kt RI occurs
but positive for 55- and 65-kt RI thresholds (Fig. 3b). To in-
vestigate these RI probabilities, Fig. 4 presents a time series
comparison between AI-RI and SHIPS Consensus RI proba-
bilities during 45–65-kt RI events for the North Atlantic TCs
in 2019 and 2020. As seen in Fig. 4, many late season (October
and November) TCs underwent RI over 36-h and longer lead
times. The 2020 North Atlantic Hurricane season had an un-
usually active October and November, with the highest num-
ber of major hurricanes since 1950 (Klotzbach et al. 2022).
For these late season TCs, AI-RI has a lower probability of
RI for the 45- and 65-kt thresholds compared to SHIPS Con-
sensus, but a higher probability of RI for the 55-kt threshold.
One hypothesis for the discrepancy between AI-RI and
SHIPS Consensus differences for 45- and 55-kt RI is AI-RI
uses an IR difference field within 38 of the TC center when
predicting 45-kt RI and an IR difference field within 108 when
predicting 55-kt RI. These thresholds were selected based on
the North Atlantic validation dataset. In the North Atlantic
validation dataset, the climatological probability of 45-kt RI
in October and November TCs is lower compared to the en-
tire validation dataset but higher for 55-kt RI. Since later sea-
son TCs tend to be larger in the North Atlantic basin, with a
Pearson correlation coefficient of 0.23 between the radius of
the outermost closed isobar and day of year, it is possible that
AI-RI is not as well trained for RI in larger late-season TCs

as lower RI probabilities result in a higher BSS when RI does
not occur. If 45-kt RI is predicted with AI-RI trained using
the 3h-IRdiff-10deg feature, similar to 55-kt RI, AI-RI does
have a higher BSS than SHIPS Consensus.

In addition, when RI does not occur at 36-h lead times or
longer, the AI-RI probability of RI is higher than SHIPS Con-
sensus on average (Fig. 3b). This is especially noticeable for
65-kt RI. One hypothesis for these higher probabilities is that
the satellite-derived features are less reliable at longer RI
lead times. In agreement with this, K15 found that the impor-
tance of the satellite predictors decreases with increasing RI
lead time. Another hypothesis is that the frequency of RI
over longer lead times in the testing dataset is lower than in
the validation dataset. For example, 65-kt RI occurs in 8.8%
of North Atlantic TC validation times but only 6.4% in the
testing dataset. Since a higher RI probability produces a
higher BSS when RI occurs, selecting the optimal AI-RI fea-
tures with the validation dataset where RI occurs more often
could be leading to a general preference for higher AI-RI
probabilities of RI.

Overall model confidence can also be assessed using reli-
ability diagrams of forecast RI probabilities compared to ob-
served occurrence (Fig. 5). In each reliability diagram, the 1:1
line represents perfect reliability for all forecast probabilities;
i.e., the forecasted probabilities are the same as the observed
probabilities. Points above the 1:1 line indicate forecast prob-
abilities that are too low (underforecasted) and points below
the 1:1 line indicate forecast probabilities that are too high
(overforecasted). For 20-kt RI (Fig. 5a), AI-RI is generally
well calibrated, as RI occurs about 25% of the time when the
AI-RI forecast is between 20% and 30%, and is better cali-
brated than SHIPS Consensus at this RI threshold. By com-
parison, AI-RI overforecasts for 65-kt RI (Fig. 5d), especially
at probabilities higher than 20%. This leads to an overconfi-
dent forecast, where the difference between predicted and
observed probabilities is larger with increasing predicted
probability. Also notable in Fig. 5 is that SHIPS Consensus

FIG. 2. The Brier skill score (BSS) compared to climatology for AI-RI (gray), SHIPS Consensus
(light blue), AI-RI in SHIPS Consensus (dark blue), DTOPS (light green), and AI-RI and DTOPS
(dark green) for the 2019–20 North Atlantic basin TCs. A higher BSS indicates a more skillful RI
prediction. The maximum value for the BSS is 1.

G R I F F I N E T A L . 1341AUGUST 2022

Brought to you by UNIVERSITY OF WISCONSIN MADISON | Unauthenticated | Downloaded 09/05/23 05:13 PM UTC



produces much higher probabilities for 45- and 65-kt RI
(Figs. 6c and 6d) than AI-RI. These higher probabilities fur-
ther contribute to the increased relative skill for SHIPS
Consensus compared to AI-RI when RI occurs. Conversely,
AI-RI produces the highest RI probabilities for 20-kt RI
(Fig. 5a) and similarly high RI probabilities for 30-kt RI
(Fig. 5b) and had a similar or higher BSS. Both AI-RI and
SHIPS Consensus are underconfident for 30-kt RI, as the ob-
served probability is much higher than the predicted probability
for these higher probabilities.

b. Eastern North Pacific basin

The BSS for predicting RI in the 2019–20 eastern North
Pacific can be seen in Fig. 6. Overall, for each RI threshold,
AI-RI in SHIPS Consensus is more skillful or just as skillful
as SHIPS Consensus. Furthermore, AI-RI itself is more skill-
ful than SHIPS Consensus for 25-, 40-, 45-, and 65-kt RI,
while the difference for 30-kt RI is negligible. Overall, AI-RI
is the most skillful empirical method for predicting RI in this
basin. However, with the curious exception of 65-kt RI,
DTOPS (which has a deterministic element) is more skillful

than both AI-RI and SHIPS Consensus and even AI-RI and
DTOPS. The increased AI-RI skill for 65-kt RI is in contrast
to the North Atlantic basin, even though the SHAP values
(which indicate relative importance) of the IR feature de-
crease with longer RI time in both basins. Again, there is rela-
tively small sample size for 65-kt RI due to the extended lead
time.

The percent of improved forecasts and average difference
between the AI-RI and DTOPS RI probabilities for eastern
North Pacific TCs is shown in Fig. 7. Here, AI-RI is only com-
pared to DTOPS because it is the most skillful operational
model in this basin as indicated in Fig. 6. DTOPS is probably
more accurate than SHIPS Consensus in the eastern North
Pacific because it has higher (lower) average RI probabilities
when RI did (did not) occur compared to SHIPS Consensus,
but lower average probability of RI regardless of RI occurring
in the North Atlantic. Figure 7 indicates that the number of
improved RI forecasts from AI-RI are less than DTOPS for
all RI thresholds when RI occurs, except for 65-kt RI. This is
largely due to AI-RI assigning lower probabilities to RI events
than DTOPS. As seen in the reliability diagram in Fig. 8,
DTOPS more frequently produces higher RI probabilities. In

FIG. 3. (a) Percent of improved RI forecasts for AI-RI compared to the SHIPS Consensus for
the 2019–20 North Atlantic basin TCs. The number above each bar indicates the total number
(N) of valid RI (red bar) and non-RI (purple bar) forecasts for each threshold. (b) The average
difference (in terms of %) between the AI-RI and SHIPS Consensus RI forecast probabilities
over all N cases.
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all but 65-kt RI (Fig. 8d), RI occurs at a higher probability
than AI-RI predicts. It then follows that the overforecasting of
65-kt RI by DTOPS is potentially why the AI-RI is more skill-
ful at this threshold. When RI does not occur, less than half of
the RI forecasts have an AI-RI probability lower than DTOPS.

In spite of the overall better performance of DTOPS in this
basin, a closer look at the testing cases reveals that AI-RI can
improve on DTOPS in higher latitude cases. In DTOPS, one
of the highest contributing predictors is cos(LAT) 3 VMAX
(Onderlinde and DeMaria 2018), with lower values of latitude
increasing the probability of RI. Therefore, DTOPS may be

less skillful for TCs at higher latitudes. AI-RI also includes
latitude as a feature, but the relative impact is much lower
than in DTOPS. Figure 9a displays the BSS for all TCs, and
Fig. 9b displays the BSS for only TCs with a latitude above
158N. DTOPS is less skillful than AI-RI for 5 RI thresholds,
and this is due to AI-RI producing a higher average RI proba-
bility than DTOPS when 30-, 40-, 55-, and 65-kt RI occur
as well as a lower average RI probability when 35-, 40-, and
55-kt RI does not occur (not shown). Therefore, the increased
skill for AI-RI compared to DTOPS for these higher latitude
eastern North Pacific TCs is not only due to increasing the RI

FIG. 4. A comparison of RI probability for AI-RI (gray) and SHIPS Consensus (light blue) for all verifying RI forecasts of (a) 45-, (b) 55-,
and (c) 65-kt RI for 2019–20 North Atlantic TCs.
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probability when RI does occur, but also having a lower prob-
ability of RI than DTOPS when RI does not occur.

c. Feature contributions to AI-RI probabilities

As noted earlier, SHAP values can be used to identify
which characteristics in the satellite IR images (features) are
contributing, positively or negatively, toward RI probabilities.
Figure 10 depicts IR features and SHAP values from five dif-
ferent TC times when 30-kt RI is occurring. In Fig. 10, the left
column displays the IR BTs while the middle column displays
the normalized BTs from the left column after subtracting the
mean and dividing by the standard deviation of all BTs for
the North Atlantic TCs in the training dataset. Therefore,

blue (red) in Fig. 10 indicate BTs that are colder (warmer)
than the mean BT. These normalized BTs are the inputs for
AI-RI. The resulting total SHAP values are depicted in the
right column. The cases displayed in Fig. 10 were chosen as
they all have similar total SHAP values (contributing approxi-
mately seven to nine percentage points to the RI probability),
but the total satellite feature value (normalize BT summed
over all grid points) is much different. One contributing char-
acteristic to the increased probability of RI is the extent of the
central dense overcast (left column). These positive SHAP val-
ues (right column) are similar to the SHIPS-RII predictor of
the percentage of area with 2308C GOES-IR BT within a
50–200-km range and are especially evident in all but Fig. 10b
(Delta). In Fig. 10b, the higher BTs near Delta’s center

FIG. 5. Reliability diagram for the AI-RI (gray) and SHIPS Consensus (light blue) of (a) 20-, (b) 30-, (c) 45-, and
(d) 65-kt RI probabilities for 2019–20 North Atlantic TCs. The inset depicts the corresponding number of forecasts
for each predicting RI probability bin.
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contribute negatively to RI, possibly because AI-RI is inter-
preting these BTs as a dry slot. However, the highest SHAP
values in Fig. 10 are associated with isolated cold BTs in the
satellite image feature, with texture clearly indicating convec-
tion. Convection positively contributing to RI is consistent

with previous studies that associate RI with intense convection
(DeMaria et al. 2012; Monette et al. 2012).

Figure 11 depicts the SHAP values for the 3h-IRdiff-3deg
feature, which relates convective tendencies to RI probabili-
ties. Again, the cases in Fig. 11 were chosen as they all have a

FIG. 6. As in Fig. 2, but for eastern North Pacific TCs.

FIG. 7. (a) Percent of improved RI forecasts for AI-RI compared to DTOPS for the 2019–20
eastern North Pacific basin TCs. The number above each bar indicates the total number (N) of
valid RI (red bar) and non-RI (purple bar) forecasts for each threshold. (b) The average differ-
ence (in terms of %) between the AI-RI and DTOPS RI forecast probabilities over all N cases.
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similar total SHAP values (contributing approximately ten to
thirteen percentage points to the RI probability) but the total
satellite feature value is much different. In Fig. 11, the left-
most columns display the IR BTs for the two satellite images
contributing to the normalized IR difference value in the
rightmost center column. In Fig. 11, blue (red) indicate BT
differences that are larger (smaller) than the mean BT differ-
ent. SHAP values are displayed in the right column. It is evi-
dent based on the SHAP values that a warming or neutral
change near the TC center positively contributes to the proba-
bility of RI. The warming signal is likely coincident with the
beginning of an eye formation in the IR, which has been asso-
ciated with rapid intensification (Vigh et al. 2012). Indeed, an
eye is subsequently present in the IR images in the majority
of these cases 24 h later.

To shed more light on the contributing features to the
AI-RI probabilities for this RI category, the SHAP values for
all instances of 30-kt RI in 24 h occurring in the 2019 and 2020
North Atlantic TCs are shown in Fig. 12. Features are ordered
from the highest contribution to the total SHAP value at the
top to the lowest at the bottom. Each RI forecast is repre-
sented by a dot, with the color of each dot indicating the nor-
malized value of a given feature when 30-kt RI occurred in
2019 and 2020 North Atlantic TCs. Based on Fig. 12, the high-
est individual contributing features to the overall RI probabil-
ities are the satellite features and then the scalar features.
While there are no distinguishable trends between satellite
features and SHAP values, some trends can be identified be-
tween scalar features and SHAP values. Some of these trends
are intuitive. The highest contributing scalar feature is DELV,

FIG. 8. Reliability diagram for the AI-RI (gray) and DTOPS (light green) of (a) 20-, (b) 30-, (c) 40-, and (d) 65-kt
RI probabilities for 2019–20 eastern North Pacific TCs. The inset depicts the corresponding number of forecasts for
each predicting RI probability bin.
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with the red dots associated with larger SHAP values indicating
that a higher rate of intensification in the previous 12 h is corre-
lated with increasing the probability of RI. Both 850–200-hPa
vertical wind shear (VWS) features (SHDC and SHRD) also
contribute highly to the probability of RI, with higher values be-
ing less favorable for RI (it should be noted that the lack of neg-
ative contribution instances by VWS features is symptomatic of
this subsample of cases being limited to only when RI actually
occurs). Higher MPI and a greater difference between current
and maximum potential intensity (POT) also increase the prob-
ability of RI, as well as warmer underlying ocean values (RSST,
COHC). A less intuitive feature that highly contributes to the
30-kt RI probability is the 850-hPa tangential wind. V850 is pos-
sibly the highest contributing tangential wind feature because
the TC maximum tangential wind usually occurs between
800 and 900 hPa (Doyle et al. 2017). Figure 12 shows that
lower values of V850 are mainly associated with more posi-
tive SHAP values. Weaker TCs have lower tangential wind
(Doyle et al. 2017; Stern and Nolan 2011). Therefore, this
correlation is likely due to already strong TCs being less
likely to undergo RI. Lower values of V850 are also associ-
ated with smaller TCs, as the V850 is highly correlated with
the radius of outer closed isobar (ROCI). Smaller TCs are
also more favorable for rapid deepening (Knaff et al. 2018);

however, Carrasco et al. (2014) indicated the ROCI appears
to have little to no relationship with subsequent intensifica-
tion. Therefore, it is unclear if the lower V850 is indicative
of smaller TCs, which are more likely to rapidly intensify.

The correlation between all feature and SHAP values,
ranked by contribution to the total SHAP value, for all RI
thresholds for all 2019 and 2020 TCs is shown in Fig. 13. Fea-
tures at the bottom of the panels with no plotted correlations
are not used when predicting RI at any threshold in the basin.
As in Fig. 12, the satellite features have the highest individual
contributions to the total SHAP values. In the eastern North
Pacific basin, the contribution of the IR feature is higher than
most IR difference features, possibly due to the disparity in
convection between intensifying and weakening TCs being
greater in the eastern North Pacific basin than North Atlantic
basin (DeMaria et al. 2012). For the scalar features, many of
the correlations between feature and SHAP value are consis-
tent with the SHIPS Consensus RI models. For example, in-
creased POT, DELV (known as PER in SHIPS-RII), ocean
temperatures (COHC, RSST, CD26), and total precipitable
water (TPW), as well as low VWS, are correlated with high
SHAP values and increased probability of RI (K15). VWS be-
tween 850 and 200 hPa (SHDC, SHRD) contributes more to
the total SHAP value than VWS between 850 and 500 hPa

FIG. 9. (a) The Brier skill score (BSS) compared to climatology for AI-RI (gray), DTOPS
(light green), and AI-RI and DTOPS (dark green) for the 2019–20 eastern North Pacific basin
TCs. A higher BSS indicates a more skillful RI prediction. (b) BSS comparison of RI forecasts
for TCs north of 158N.
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FIG. 10. IR data for a given RI forecast, normalized IR data for AI-RI, and corresponding SHAP
values for five TCs that underwent 30-kt RI in the North Atlantic basin.
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FIG. 11. IR data within 38 of the TC center from 3 h prior to RI forecast, current IR data, normalized difference between the 3-h
prior IR data and the current IR data for AI-RI, and corresponding SHAP values for five TCs that underwent 30-kt RI in the North
Atlantic basin.
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(SHRS). Also consistent with K15 is the correlation between
VMAX and SHAP values. Decreasing VMAX is correlated
with increasing SHAP values as the RI time period lengthens,
similar to K15 finding that RI occurs at lower VMAX values
as the RI lead time increases. High EPSS and low ENSS is
correlated with increased SHAP values, also as seen in K15.
For relative humidity (RH) predictors, increased RHLO is cor-
related with higher SHAP values (consistent with KDK10),
while increased RHMD is also mostly correlated with higher
SHAP values. For RHHI, decreased RH is associated with

increased SHAP values, except for 65-kt RI. These correlations
are potentially due to the relationship between intensity and
300–500-hPa RH, as weaker TCs tend to have higher values of
RH at these levels (Wu et al. 2012). Conversely, no consistent
correlation between D200 and SHAP values exists, though K15
suggests D200 is higher when RI occurs.

While many of the scalar features are consistent between
the AI-RI and SHIPS Consensus models, other scalar fea-
tures in AI-RI are not considered by the SHIPS Consensus
RI models. Most noticeable is LAT, one of the larger

FIG. 12. Feature SHAP values for all instances of 30-kt RI occurring in the 2019–20 TCs in the
North Atlantic basin (N 5 40 RI cases). Features are sorted from highest to lowest based on
their contribution to the overall SHAP value total. Each RI forecast is represented by a dot,
with the color of each individual dot indicating the value of a given feature is low (blue) or high
(red) compared to all values of that given feature when 30-kt RI occurred in 2019 and 2020
North Atlantic TCs.
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FIG. 13. Correlation between feature and SHAP values for all 2019–20 TCs. Features are sorted from highest to
lowest based on their contribution to the overall SHAP value total.
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contributors to total SHAP values. Latitude is negatively cor-
related with SHAP values. Therefore, lower latitude TCs are
more likely to undergo RI, which is consistent with a study of
western North Pacific TCs by Wang and Zhou (2008). Latitude
is included in DTOPS and is also negatively correlated with RI
probability (Onderlinde and DeMaria 2018). Other scalar fea-
tures not considered by the SHIPS Consensus models that are a
part of AI-RI include the tangential wind features (previously
described) as well as HIST, Z850, and TOD. V850 is in the up-
per half of contribution features for AI-RI, and greater differ-
ences between the AI-RI and DTOPS probabilities of RI are
moderately correlated with increased SHAP values from V850.
HIST is also a moderate contributor to total SHAP values; the
probability of RI is increased for TCs early in their life cycle.
Z850 and TOD are generally lower contributors to the total
SHAP values, and do not have consistent correlations be-
tween SHAP and feature values for most RI thresholds. Higher
Z850 SHAP values, though, are correlated with a greater differ-
ence between the AI-RI and DTOPS probabilities for RI lead
times of 24 h or less.

The changing of various features in this model across each
of the RI thresholds and basins remains an interesting but un-
resolved issue, just as in previous models for RI (Rozoff and
Kossin 2011; K15; Shaiba and Hahsler 2016). Any attempt to

account for these differences would exceed the precision of
the limited training dataset. As it stands, the varying feature
differences across threshold and basin suggest an intriguingly
complex interplay between these factors and the varieties
of RI.

The importance of satellite features to the prediction of RI
can be further observed in Fig. 14. Figure 14 compares the
BSS for AI-RI trained with IR imagery (blue bars) to a CNN
trained without IR imagery (red bars). For all RI thresholds,
except those over 36 h or longer in the eastern North Pacific
basin, AI-RI with IR imagery is more skillful than without IR
imagery, further highlighting the importance of IR imagery.

6. Summary and conclusions

This study develops a convolutional neural network, named
AI-RI, to predict the probability of rapid intensification (RI)
for North Atlantic and eastern North Pacific tropical cyclones
(TCs) using satellite infrared (IR) imagery, as well as scalar
features. A selection of optimal features for AI-RI are deter-
mined by first developing a “kitchen sink” version of the
model, which uses all scalar features listed in Table 1 in addi-
tion to the satellite features, and then randomizing the data
for one feature at a time and recalculating the probability of

FIG. 14. The Brier skill score (BSS) compared to climatology for AI-RI trained with (blue)
and without (red) the IR satellite features for 2019–20 (a) North Atlantic basin and (b) eastern
North Pacific TCs.
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RI to determine the feature’s impact on RI prediction skill. A
feature is considered optimal for RI prediction if AI-RI skill,
denoted by the Brier skill score, decreases with the feature’s
randomization. RI is predicted for 8 different intensity in-
crease (VMAX) thresholds: 20 kt in 12 h; 25, 30, 35, and 40 kt
in 24 h; 45 kt in 36 h; 55 kt in 48 h, and 65 kt in 72 h.

AI-RI is tested on an independent dataset consisting of
North Atlantic and eastern North Pacific TCs in 2019 and
2020. RI probabilities are compared with two existing objec-
tive methods used operationally at the National Hurricane
Center: SHIPS Consensus (which includes the SHIPS-RII
model) and DTOPS (which includes some deterministic model
predictors). In the North Atlantic basin, results show that
AI-RI is more skillful for seven of the eight RI thresholds
compared to DTOPS, and three RI thresholds over the 24-h
time period compared to SHIPS Consensus. Adding AI-RI
into the SHIPS Consensus is also more skillful than SHIPS
Consensus for all of the 12- and 24-h RI thresholds. For
these five RI thresholds, on average AI-RI has higher RI
probabilities for cases when RI occurs compared to SHIPS
Consensus, and lower probabilities when RI does not occur.
For RI thresholds covering 36-h lead times and longer, AI-RI
is less skillful than the SHIPS Consensus due to higher average
RI probabilities when RI does and does not occur. One hy-
pothesis for these higher probabilities is that the satellite-
derived features are less relevant to longer RI lead times. An
exception occurs for the 45-kt RI category, where the AI-RI
probability of RI is lower when RI occurs. This is possibly due
to 45-kt RI occurring in many larger late-season October and
November North Atlantic TCs in 2019 and 2020, and the IR
difference feature within 38 feature was inadequate for these
larger systems.

In the eastern North Pacific basin, AI-RI is more skillful
than SHIPS Consensus for four of the eight RI thresholds,
and including the AI-RI in the SHIPS Consensus has a higher
or similar skill than SHIPS Consensus for all eight RI thresh-
olds. Therefore, AI-RI is a skillful empirical method for pre-
dicting RI in this TC basin. However, the quasi-deterministic
DTOPS model is more skillful than AI-RI for all RI thresh-
olds except 65 kt. However, for TCs north of 158N, AI-RI is
more skillful than DTOPS for five of the RI thresholds in this
basin.

In addition to skillfully predicting TC RI, AI-RI highlights
the importance of vigorous organized convection in initiating
RI, with strongly positive SHAP values corresponding to con-
vective features in IR satellite imagery. Though it can be diffi-
cult to “see” RI in a given IR satellite image, the highest
contributing features to the AI-RI probabilities are IR-based.
By comparison, the relative weight of the IR predictors ranks
third or fourth in SHIPS-RII, and is lower than vertical wind
shear (K15). Perhaps more importantly, the convective trend
(IRdiff feature) supplies a strong signal to the AI-RI proba-
bilities, whereas other existing RI methods do not include this
predictor. Since convective behavior is difficult to quantify as
a scalar input to algorithms such as SHIPS-RII, the convolu-
tional neural network used here is more appropriate for the
task. SHAP values indicate the importance of also including
short-term trends in the IR pixels (and cloud organization).

These trends are missed by the existing operational RI models
that only input and analyze the current cloud pattern.

Since AI-RI identifies convection as an important contribu-
tor to RI probabilities, future work will include training AI-RI
with a short series of rapid-scan IR images to better identify ac-
tive convection, as convective overshooting tops can have a life-
span as short as 10 min (Gettelman et al. 2002). In addition,
AI-RI will be trained with additional two-dimensional environ-
mental features, such as vertical wind shear and layered precipi-
table water, to identify if the location/orientation of these
features with respect to the TC core can improve RI prediction
as suggested by K15.
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